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Goal of this series of talks

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics
2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: limits

3 Representation theory: Categories of modules, semi-simplicity,
isomorphism classes i.e. the framework of Kronecker coefficients.

4 MRS factorisation: A local system of coordinates for Hausdorff
groups.
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Disclaimer. – The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.
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CCRT[21] MRS and the outer world II.
How infinite sums and product represent functions.

Let us first begin by a micro-compendium about the value of training to form the
researcher (source [17], preface to the first edition).

It is said that Ramanujan taught himself mathematics by systematically working
through 6000 problemsa of Carr’s Synopsis of Elementary Results in Pure and
Applied Mathematics.
Freeman Dyson in his Disturbing the Universe describes the mathematical
days of his youth when he spent his summer months working through hundreds of
problems in differential equations.
If we look back at our own mathematical development, we can certify that
problem solving plays an important role in the training of the research mind.
In fact, it would not be an exaggeration to say that the ability to do research is
essentially the art of asking the “right” questions. I suppose Pólya summarized
this in his famous dictum: ”if you can’t solve a problem, then there is
an easier problem you can solve - find it!”

aActually, Carr’s Synopsis is not a problem book. It is a collection of
theorems used by students to prepare themselves for the Cambridge Tripos.
Ramanujan made it famous by using it as a problem book.
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TSC and metric (abelian) groups

1 Let us restart from Exercise 4 of CCRT[20].

1 Ex4. –
Let (G ,+, d) be an abelian group endowed with a distance d . We say
that it is a metric group if the operations (g , h)→ g + h and g → −g
are continuous.
1) Let X be an alphabet and k a ring. Prove that (k〈〈X 〉〉,+, d), where
d is the distance (??) is a metric group.
2) In a metric group, a family (gi )i∈I is said summablea to S if

(∀ε > 0)(∃F ⊂finite I )(F ⊂ F ′ ⊂finite I =⇒ d
(∑

j∈F ′ gj ,S
)
< ε)

3) Show that, if X is finite, a family (Si )i∈I of series is summable if, for
all w ∈ X ∗, the map i → 〈Si |w〉 is finitely supported. Show that its
sum is then

S =
∑

w∈X∗
∑

i∈I 〈Si |w〉w

aFor summability, have a look there
https://mathoverflow.net/questions/289760

http://www.cip.ifi.lmu.de/~grinberg/t/21s/lecs.pdf
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As a motivation: the mechanism of MRS (double series
and linear operators)

1 And (re)consider the MRS factorization which is one of our precious jewels.

DX :=
∑

w∈X∗

w ⊗ w =
∑

w∈X∗

Sw ⊗ Pw =

↘∏
l∈LynX

exp(Sl ⊗ Pl ) (1)

2 It is of the form A = B = C = D. What do we have ?

A = B is a definition.
B = C is the expression of “Bases in Duality” and is better interpreted
as an identity between operators.
C = D is a factorization into an infinite product again better
interpreted as an identity between operators.

3 To understand (and prove) (1) the ultrametric distance (indeed a M-adic
distance) will be sufficient. But first, let’s have a slide of motivation.
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Double series and operators

4 Let us start with a double series S ∈ k〈〈X ∗ ⊗X ∗〉〉. It is expressed as

S =
∑

u,v∈X∗
〈S |u ⊗ v〉 u ⊗ v (2)

5 This sum can be rearranged as

S =
∑

v∈X∗

( ∑
u∈X∗

〈S |u⊗v〉 u
)
⊗v =

∑
v∈X∗

( ∑
u∈X∗

〈S |u⊗v〉 u
) ⊗

︸︷︷︸
mind

this step

v (3)

On the left of the big tensor, there are series and, on the right there are
polynomials (monomials there), so we must clarify something here.

6 Although the arrow k〈〈X 〉〉 ⊗ k〈〈X 〉〉 → k〈〈X ∗ ⊗X ∗〉〉 i.e. (tensor product

of series towards double series) is not into in general (see CIP
09/02/21) its restriction to k〈〈X 〉〉 ⊗ k〈X 〉 is into (exercise LTTR, see
below).
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B = C as an identity between operators/1

7 Let us unpack this ... and be careful

8 Ex5. –
Let T =

∑
u,v∈X∗〈T |u ⊗ v〉 u ⊗ v ∈ k〈〈X ∗ ⊗X ∗〉〉 be double series.

1) Show that, for all fixed v ∈ X ∗, the family (〈T |u ⊗ v〉 u)u∈X∗ is
summable in k〈〈X ∗〉〉, let Tv denote its sum.
2) Show that the following composition Im = nat ◦(Id⊗j) is into

k〈〈X 〉〉 ⊗ k〈X 〉 Id⊗j
k〈〈X 〉〉 ⊗ k〈〈X 〉〉 nat k〈〈X ∗ ⊗X ∗〉〉 (4)

3) Show that
(
Im(Tv ⊗ v)

)
v∈X∗

is summable in k〈〈X ∗ ⊗X ∗〉〉 and that its

sum is precisely T .
4) Adapt the preceding replacing (v)v∈X∗ by a basis (Qi )i∈I of k〈X 〉. In
particular prove that T can be written uniquely

T =
∑
i∈I

Im(Li ⊗ Qi ) (5)
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B = C as an identity between operators/2
Building the arrow k〈〈X ∗ ⊗X ∗〉〉 → Hom(k〈X 〉, k〈〈X 〉〉).

9 Ex6. –
Firstly, we consider a family F = (Li ⊗ Qi )i∈I as in (5). For now, we only
suppose that (Qi )i∈I is summable.
1) Prove that, for all w ∈ X ∗, the family (〈Li |w〉Qi )i∈I is summable in
k〈〈X 〉〉.
2) To such a family we associate ΦF ∈ Hom(k〈X 〉, k〈〈X 〉〉), defined by

w 7→
∑
i∈I

〈Li |w〉Qi = ΦF (w) (6)

Prove that ΦF depends only on S , we denote it by ΦS .
3) Show that correspondence k〈〈X ∗ ⊗X ∗〉〉 → Hom(k〈X 〉, k〈〈X 〉〉) is into.
4) If (Qi )i∈I is a basis of k〈X 〉 and (Li )i∈I its family of coordinates forms
(defined by 〈Li |Qj〉 = δij , we set F1 = (Li ⊗ Qi )i∈I , show that

ΦF1 = j : k〈X 〉 ↪→ k〈〈X 〉〉 (7)
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C = D product and then infinite product/1

10 Of course, one can bluntly rearrange terms of C to get D we warn the
reader that this is NOT a proof because we do not have established
commutative convergence (we have signs and remember [29]) nor a correct
mechanism for convergence of the infinite product.

11 Let’s go aside the classical construction of Pw by the Lyndon basis and Sw

by the magic recursion that we recall now.

Lyndon basis and its dual

Px = x for x ∈ X ,
P` = [Ps ,Pr ] for ` ∈ LynXrX and σ(`) = (s, r),
Pw = P i1

`1
. . .P ik

`k
for w = `i1

1 . . . `
ik
k , `1 � . . . � `k , (`i ∈ LynX ).

Sx = x for x ∈ X ,
Sl = xSu, for l = xu ∈ LynXrX ,

Sw =
Stt

i1
l1

tt . . . tt Stt
ik

lk

i1! . . . ik !
for w = l i11 . . . l

ik
k , l1 � . . . � lk .
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C = D product and then infinite product/2

12 In this particular case the route is

Basis of Lie polynomials PBW basis of NC polynomials

Recursion and dual basis.

13 If we want to gain generality, we have to go first to ϕ-deformed shuffle
products (see below the vast variety of such products present in the
literature.

14 There is a common pattern.

wttϕ1X∗ = 1X∗ttϕw = w and
auttϕbv = a(uttϕbv) + b(auttϕv) + ϕ(a, b) (uttϕv) (8)
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Variety of shuffles as found in literature

Name Formula (recursion) ϕ Reference

Shuffle au tt bv = a(u tt bv) + b(au tt v) ϕ ≡ 0 Ree
Stuffle xi u xj v = xi (u xj v) + xj (xi u v) ϕ(xi , xj ) = xi+j Hoffman

+ xi+j (u v)

Min-stuffle xi u xj v = xi (u xj v) + xj (xi u v) ϕ(xi , xj ) = −xi+j Costermans
− xi+j (u v)

Muffle xi u q xj v = xi (u q xj v) + xj (xi u q v) ϕ(xi , xj ) = xi×j Enjalbert,HNM
+ xi×j (u q v)

q-shuffle xi u q xj v = xi (u q xj v) + xj (xi u q v) ϕ(xi , xj ) = qxi+j Bui
+ qxi+j (u q v)

q-shuffle2 xi u q xj v = xi (u q xj v) + xj (xi u q v) ϕ(xi , xj ) = qi.j xi+j Bui

+ qi.j xi+j (u q v)

LDIAG(1, qs ) au tt bv = a(u tt bv) + b(au tt v) ϕ(a, b) = q
|a||b|
s (a.b) GD,Koshevoy,Penson,Tollu

+ q
|a||b|
s a.b(u tt v)

q-Infiltration au ↑ bv = a(u ↑ bv) + b(au ↑ v) ϕ(a, b) = qδa,ba
+ qδa,ba(u ↑ v) Chen-Fox-Lyndon

AC-stuffle au ttϕ
bv = a(u ttϕ

bv) + b(au ttϕ
v) ϕ(a, b) = ϕ(b, a)

+ ϕ(a, b)(u ttϕ
v) ϕ(ϕ(a, b), c) = ϕ(a, ϕ(b, c)) Enjalbert,HNM

Semigroup- xt u tt⊥ xs v = xt (u tt⊥ xs v) + xs (xt u tt⊥ v) ϕ(xt , xs ) = xt⊥s
-stuffle + xt⊥s (u tt⊥ v) Deneufchâtel

ϕ-shuffle au ttϕ
bv = a(u ttϕ

bv) + b(au ttϕ
v) ϕ(a, b) law of AAU

+ ϕ(a, b)(u ttϕ
v) Manchon, Paycha
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C = D product and then infinite product/2

15 In all tractable cases (stuffle and q-stuffle with constant or bicharacter or,
even, cocycle).

1 ϕ is commutative
2 ϕ is dualizable and moderate

16 This means that the bialgebra
(
k〈X 〉, ttϕ, 1X∗ , conc, ε

)
is an enveloping

algebra.

17 As we are in CCRT series, let us recall what is a universal enveloping
algebraa in terms of categories and functors.

ai.e. is the most general (unital, associative) algebra that contains all
representations of a Lie algebra, see [32].
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Recall: CCRT[1,3] Universal Problems, heteromorphisms
and adjunctions
Free structures w.r.t. a functor

1 Let Cleft , Cright be two categories and F : Cright → Cleft a (covariant)
functor between them

Cleft Cright

U V

Free(U)

F

f

jU f̂

Figure: A solution of the universal problem w.r.t. the functor F is the datum, for
each U ∈ Cleft , of a pair (jU ,Free(U)) (with jU ∈ Hom(U,F [Free(U)]),
Free(U) ∈ Cright) such that, for all f ∈ Hom(U,F [V ]) it exists a unique
f̂ ∈ Hom(Free(U),V ) with F [f̂ ] ◦ jU = f . Elements in Hom(U,F [V ]) are called
heteromorphisms their set is noted HetF (U,V ).(
∀f ∈ Hom(U,F [V ])

)(
∃! f̂ ∈ Hom(Free(U),V )

)(
F (f̂ ) ◦ jU = f

)
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First example: T = UL, k field-based.

k− Vect k− Lie

V g

Liek(V )

F

f

j f̂

k− Lie k− AAU

g A

U(g)

F

f

j f̂

Set k− Vect

X V

k(X )

F

f

j f̂

k− Vect k− AAU

V A

T (V )

F

f

j f̂

T (V ) = U(Liek(V )) k〈X 〉 = T (k(X ))
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First example: T = UL, ring-based.

k−Mod k− Lie

M g

Liek(M)

F

f

j f̂

k− Lie k− AAU

g A

U(g)

F

f

j f̂

Set k−Mod

X M

k(X )

F

f

j f̂

k−Mod k− AAU

M A

T (M)

F

f

j f̂

T (M) = U(Liek(M)) k〈X 〉 = T (k(X ))
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Independence of characters w.r.t. polynomials.
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Independence of characters w.r.t. polynomials./2

Let g be a Lie algebra over a ring k without zero divisors, U = U(g) be its
enveloping algebra. As such, U is a Hopf algebra. We note ε its counit and set
U+ = ker(ε). We build the following filtrations (N ≥ 0)

UN = UN
+ = U+. . . . .U+︸ ︷︷ ︸

N times

(1)

(in fact U0 = U ,UN+1 = U .UN ) and, for N ≥ −1

U∗N = U⊥N+1 = {f ∈ U∗|(∀u ∈ UN+1)(f (u) = 0)} (2)

the first one is decreasing and the second one increasing (in particular
U∗−1 = {0}, U∗0 = k .ε).
One shows easily that, for p, q ≥ 0 (with � as the convolution product)

U∗p � U∗q ⊂ U∗p+q

so that U∗∞ = ∪n≥0 U∗n is a convolution subalgebra of U∗.
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Independence of characters w.r.t. polynomials./3

Now, we can state the

Theorem (From MO, k ring without zero divisors)

The set of characters of (U , ., 1U ) is linearly free w.r.t. U∗∞.

Remark

i) U∗∞ is a commutative k-algebra.
ii) The title (“Independence of characters ...”) comes from the fact that,
with (k〈X 〉, conc , 1) (non commutative polynomials), k a Q-algebra
(without zero divisors) and one of the usual comultiplications (with ∆+

cocommutative and nilpotent, as co-shufflle, co-stuffle or - commutatively
- deformed), if one takes g as the space of primitive elements, we have
U∗ = k〈〈X 〉〉 (series) and U∗∞ = k〈X 〉.
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Variety of shuffles as found in literature

Name Formula (recursion) ϕ Reference

Shuffle au tt bv = a(u tt bv) + b(au tt v) ϕ ≡ 0 Ree
Stuffle xi u xj v = xi (u xj v) + xj (xi u v) ϕ(xi , xj ) = xi+j Hoffman

+ xi+j (u v)

Min-stuffle xi u xj v = xi (u xj v) + xj (xi u v) ϕ(xi , xj ) = −xi+j Costermans
− xi+j (u v)

Muffle xi u q xj v = xi (u q xj v) + xj (xi u q v) ϕ(xi , xj ) = xi×j Enjalbert,HNM
+ xi×j (u q v)

q-shuffle xi u q xj v = xi (u q xj v) + xj (xi u q v) ϕ(xi , xj ) = qxi+j Bui
+ qxi+j (u q v)

q-shuffle2 xi u q xj v = xi (u q xj v) + xj (xi u q v) ϕ(xi , xj ) = qi.j xi+j Bui

+ qi.j xi+j (u q v)

LDIAG(1, qs ) au tt bv = a(u tt bv) + b(au tt v) ϕ(a, b) = q
|a||b|
s (a.b) GD,Koshevoy,Penson,Tollu

+ q
|a||b|
s a.b(u tt v)

q-Infiltration au ↑ bv = a(u ↑ bv) + b(au ↑ v) ϕ(a, b) = qδa,ba
+ qδa,ba(u ↑ v) Chen-Fox-Lyndon

AC-stuffle au ttϕ
bv = a(u ttϕ

bv) + b(au ttϕ
v) ϕ(a, b) = ϕ(b, a)

+ ϕ(a, b)(u ttϕ
v) ϕ(ϕ(a, b), c) = ϕ(a, ϕ(b, c)) Enjalbert,HNM

Semigroup- xt u tt⊥ xs v = xt (u tt⊥ xs v) + xs (xt u tt⊥ v) ϕ(xt , xs ) = xt⊥s
-stuffle + xt⊥s (u tt⊥ v) Deneufchâtel

ϕ-shuffle au ttϕ
bv = a(u ttϕ

bv) + b(au ttϕ
v) ϕ(a, b) law of AAU

+ ϕ(a, b)(u ttϕ
v) Manchon, Paycha

Common pattern

wttϕ1X∗ = 1X∗ttϕw = w and
auttϕbv = a(uttϕbv) + b(auttϕv) + ϕ(a, b)(uttϕv) (9)
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ϕ-shuffles as evaluations of paths

With Y = {yi}i≥1, one can see the product uttϕv as a sum indexed by paths
(with right-up-diagonal steps) within the grid formed by the two words (u
horizontal and v vertical, the diagonal steps corresponding to the factors ϕ(a, b))

•
A

•B

y3 y2 y5

y2

y1

Computation of y2y1ttϕy3y2y5

For example, the path

•
A

•B

y3 y2 y5

y2

y1

evaluates as ϕ(y2, y3)y2y5y1
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the path

•
A

•B

y3 y2 y5

y2

y1

reads y3ϕ(y2, y2)ϕ(y1, y5).

We have the following

Theorem (Radford theorem for ttϕ)

Let k be a Q-algebra (associative, commutative with unit) such that

ttϕ : k〈X 〉 ⊗ k〈X 〉 → k〈X 〉

is associative and commutative then

(Lyn(X )ttϕα)α∈N(Lyn(X )) is a linear basis of k〈X 〉.
This entails that (k〈X 〉, ttϕ, 1X∗) is a polynomial algebra with
Lyn(X ) as transcendence basis.
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Making (combinatorial) bialgebras

Proposition

Let k be a commutative ring (with unit). We suppose that the product ϕ is
associative, then, on the algebra (k〈X 〉, ttϕ, 1X∗), we consider the
comultiplication ∆conc dual to the concatenation

∆conc (w) =
∑

uv=w

u ⊗ v (10)

and the “constant term” character ε(P) = 〈P|1X∗〉.
Then

(i) With this setting, we have a bialgebra a.

Bϕ = (k〈X 〉, ttϕ, 1X∗ ,∆conc , ε) (11)

(ii) The bialgebra (eq. 11) is, in fact, a Hopf Algebra.

aCommutative and, when |X | ≥ 2, noncocommutative.
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Dualizability

If one considers ϕ as defined by its structure constants

ϕ(x , y) =
∑
z∈X

γz
x ,y z

one sees at once that ttϕ is dualizable within k〈X 〉 iff the tensor γz
x ,y is

locally finite in its contravariant place “z” i.e.

(∀z ∈ X )(#{(x , y) ∈ X 2|γz
x ,y 6= 0} < +∞) .

Remark

Shuffle, stuffle and infiltration are dualizable. The comultiplication
associated with the stuffle with negative indices is not.
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Dualizability/2

In the case when ttϕ is dualizable, one has a comultiplication

∆ttϕ
: k〈X 〉 → k〈X 〉 ⊗ k〈X 〉

such that, for all u, v ,w ∈ X ∗

〈uttϕv |w〉 = 〈u ⊗ v |∆ttϕ
(w)〉 (12)

Then, the following
B∨ϕ = (k〈X 〉, conc , 1X∗ ,∆ttϕ

, ε) (13)

is a bialgebra in duality with Bϕ (not always a Hopf algebra although B was so,
for example, see B with ttϕ =↑q i.e. the q-infiltration).

The interest of these bialgebras is that they provide a host of
easy-to-within-compute bialgebras with easy-to-implement-and-compute set of
characters through the following proposition.
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Proposition (Conc-Bialgebras)

Let k be a commutative ring, X a set and ϕ(x , y) =
∑

z∈X γ
z
x,y z an associative

and dualizable law on k.X. Let ttϕ and ∆ttϕ
be the associated product and

co-product. Then:
i) B = (k〈X 〉, conc , 1X∗ ,∆ttϕ

, ε) is a bialgebra which, in case Q ↪→ k, is an

enveloping algebra iff ϕ is commutative and ∆+
ttϕ

nilpotent.

ii) In the general case S ∈ k〈〈X 〉〉 = k〈X 〉∨ is a character for
A = (k〈X 〉, conc , 1X∗) (i.e. a conc-character) iff it is of the form

S = (
∑
x∈X

αx x)∗ =
∑
n≥0

(
∑
x∈X

αx x)n and, with this notation (14)

(
∑
x∈X

αx x)∗ttϕ(
∑
x∈X

βy y)∗ =

∑
z∈X

(αz + βz ) z +
∑

x,y∈X

αxβy ϕ(x , y)

∗(15)

GD, Darij Grinberg and Hoang Ngoc Minh Three variations on the linear
independence of grouplikes in a coalgebra, [arXiv:2009.10970]

GD, Quoc Huan Ngô and V. Hoang Ngoc Minh, Kleene stars of the plane,
polylogarithms and symmetries, (pp 52-72) TCS 800, 2019, pp 52-72.
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Main result about independence of characters w.r.t.

Theorem (G.D., Darij Grinberg, H. N. Minh)

Let B be a k-bialgebra. As usual, let ∆ = ∆B and ε = εB be its
comultiplication and its counit.
Let B+ = ker(ε). For each N ≥ 0, let BN

+ = B+ · B+ · · · · · B+︸ ︷︷ ︸
N times

, where

B0
+ = B. Note that

(
B0

+,B1
+,B2

+, . . .
)

is called the standard decreasing
filtration of B.
For each N ≥ −1, we define a k-submodule B∨N of B∨ by

B∨N = (BN+1
+ )⊥ =

{
f ∈ B∨ | f

(
BN+1

+

)
= 0
}
. (16)

Thus,
(
B∨−1,B∨0 ,B∨1 , . . .

)
is an increasing filtration of B∨∞ :=

⋃
N≥−1 B∨N

with B∨−1 = 0.
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Theorem (DGM, cont’d)

Let also Ξ(B) be the monoid (group, if B is a Hopf algebra) of characters
of the algebra (B, µB, 1B).
Then:

(a) We have B∨p ~ B∨q ⊆ B∨p+q for any p, q ≥ −1 (where we set
B∨−2 = 0). Hence, B∨∞ is a subalgebra of the convolution algebra B∨.

(b) Assume that k is an integral domain. Then, the set Ξ(B)× of
invertible characters (i.e., of invertible elements of the monoid Ξ(B) )
is left B∨∞-linearly independent.

Remark

The standard decreasing filtration of B is weakly decreasing, it can be
stationary after the first step. An example can be obtained by taking the
universal enveloping bialgebra of any simple Lie algebra (or, more
generally, of any perfect Lie algebra); it will satisfy

⋂
n≥0 Bn

+ = B+.
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Corollary

We suppose that B is cocommutative, and k is an integral domain.
Let (gx )x∈X be a family of elements of Ξ(B)× (the set of invertible
characters of B), and let ϕX : k[X ]→ (B∨,~, ε) be the k-algebra
morphism that sends each x ∈ X to gx . In order for the family (gx )x∈X (of
elements of the commutative ring (B∨,~, ε)) to be algebraically
independent over the subring (B∨∞,~, ε), it is necessary and sufficient that
the monomial map

m : N(X ) → (B∨,~, ε),
α 7→ ϕX (Xα) =

∏
x∈X

gαx
x (17)

(where αx means the x-th entry of α) be injective.
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Examples

Let k be an integral domain, and let us consider the standard bialgebra
B = (k[x ],∆, ε) For every c ∈ k, there exists only one character of k[x ]
sending x to c ; we will denote this character by (c .x)∗ ∈ k[[x ]] (motivation
about this notation is Kleene star). Thus, Ξ (B) = ((c .x)∗ | c ∈ k). It is
easy to check that (c1.x)∗ tt(c1.x)∗ =

(
(c1 + c2).x

)∗
for any ci ∈ k (∗).

Thus, any c1, c2, . . . , ck ∈ k and any α1, α2, . . . , αk ∈ N satisfy

((c1.x)∗)tt
α1 tt ((c2.x)∗)tt

α2 tt · · · tt ((ck .x)∗)tt
αk

=
(
(α1c1 + α2c2 + · · ·+ αkck ).x

)∗
. (18)

From (∗) above, the monoid Ξ (B) is isomorphic with the abelian group
(k,+, 0); in particular, it is a group, so that Ξ (B)× = Ξ (B).
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Examples/2

Take k = Q (the algebraic closure of Q) and cn =
√
pn ∈ k, where pn is

the n-th prime number. What precedes shows that the family of series(
(
√
pnx)∗

)
n≥1

is algebraically independent over the polynomials (i.e., over

Q[x ]) within the commutative Q-algebra
(
Q[[x ]], tt , 1

)
. This example can

be double-checked using partial fractions decompositions as, in fact,

(
√
pnx)∗ =

1

1−√pnx
(this time, the inverse is taken within the ordinary

product in k[[x ]]) and( 1

1−√pnx

)tt n
=

1

1− n
√
pnx

.
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Examples/3

The preceding example can be generalized as follows: Let k still be an integral
domain; let V be a k-module, and let B =

(
T (V ), conc, 1T (V ),∆�, ε

)
be the

standard tensor conc-bialgebraa For every linear form ϕ ∈ V∨, there is an unique
character ϕ∗ of

(
T (V ), conc, 1T (V )

)
such that all u ∈ V satisfy

〈ϕ∗|u〉 = 〈ϕ|u〉. (19)

Again, it is easy to checkb that (ϕ1)∗ tt(ϕ2)∗ =
(
ϕ1 + ϕ2

)∗
for any ϕ1, ϕ2 ∈ V∨,

because both sides are characters of
(
T (V ), conc, 1T (V )

)
so that the equality has

only to be checked on V .

aThe one defined by

∆�(1) = 1⊗ 1 and ∆�(u) = u ⊗ 1 + 1⊗ u ; ε(u) = 0 for all u ∈ V .

bFor this bialgebra tt stands for ~ on the space Hom(B, k).
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Examples/4

Again, from this, any ϕ1, ϕ2, . . . , ϕk ∈ V∨ and any α1, α2, . . . , αk ∈ N satisfy(
(ϕ1)∗

)tt α1
tt
(
(ϕ2)∗

)tt α2
tt · · · tt

(
(ϕk )∗

)tt αk

=
(
α1ϕ1 + α2ϕ2 + · · ·+ αkϕk

)∗
. (20)

The decreasing filtration of B is given by Bn
+ =

⊕
k≥n Tk (V ) (the ideal of tensors

of degree ≥ n) and the reader may check easily that, in this case, B∨∞ is the
shuffle algebra of finitely supported linear forms i.e., for each Φ ∈ B∨, we have
the equivalence

Φ ∈ B∨∞ ⇐⇒ (∃N ∈ N)(∀k ≥ N)(Φ(Tk (V )) = {0}).

Then, Corollary above shows that (ϕ∗i )i∈I are B∨∞-algebraically independent within
(T (V )∨, tt , ε) iff the corresponding monomial map is injective, and (20) shows
that it is so iff the family (ϕi )i∈I of linear forms is Z-linearly independent in V∨.
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Magnus and Hausdorff groups

exp(−A)
exp(−B)

exp(A)
exp(B)

1G

The Magnus group is the set of series with constant term 1X∗ , the Hausdorff

(sub)-group, is the group of group-like series for ∆tt . These are also Lie

exponentials (here A,B are Lie series and exp(A)exp(B) = exp(H(A,B))).
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Hausdorff group of the stuffle Hopf algebra.

With Y = {yi}i≥1 and

∆ (yk ) = yk ⊗ 1 + 1⊗ yk +
∑

i+j=k

yi ⊗ yj

the bialgebra B = (k〈X 〉, conc, 1X∗ ,∆ , ε) is an enveloping algebra (it is
cocommutative, connex and graded by the weight function given by
||yi1yi2 · · · yik || =

∑k
s=1 is on a word w = yi1yi2 · · · yik ).

With ϕ(yi , yj ) = yi+j , (eq.15) gives

(
∑
i≥1

αi yi )
∗ (

∑
j≥1

βj yj )
∗ = (

∑
i≥1

αi yi +
∑
j≥1

βj yj +
∑
i,j≥1

αiβj yi+j )
∗ (21)

This formula suggests us to code, in an umbral style,
∑

k≥1 αk yk by the series∑
k≥1 αk x

k ∈ k+[[x ]]. Indeed, we get the following proposition whose first part,
characteristic-freely describes the group of characters Ξ(B) and its law and the
second part, about the exp-log correspondence, requires k to be Q-algebra.
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Proposition

Let πUmbra
Y be the linear isomorphism k+[[x ]]→ k̂.Y defined by∑

n≥1

αn x
n 7→

∑
k≥1

αk yk (22)

Then

1 One has, for S ,T ∈ k+[[x ]],

(πUmbra
Y (S))∗ (πUmbra

Y (T ))∗ = (πUmbra
Y ((1 + S)(1 + T )− 1))∗ (23)

2 From now on k is supposed to be a Q-algebra.

For t ∈ k and T ∈ k+[[x ]], the family ( (t.T )n

n ! )n≥0 is summable and one sets

G (t) = (πUmbra
Y (et.T − 1))∗ (24)
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Proposition (Cont’d)

3 The parametric character G fulfills the “stuffle one-parameter group”
property i.e. for t1, t2 ∈ k, we have

G (t1 + t2) = G (t1) G (t2) ; G (0) = 1Y ∗ (25)

4 We have
G (t) = exp

(
t.πUmbra

Y (T )
)

(26)

5 In particular, calling πUmbra
x the inverse of πUmbra

Y we get, for P∗ ∈ Ξ(B) (in

other words P ∈ k̂.Y ),

log (P∗) = πUmbra
Y (log(1 + πUmbra

x (P))) (27)
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Proof (Sketch)

i) We have

πUmbra
Y (S) =

∑
i≥1

〈S |x i 〉yi πUmbra
Y (T ) =

∑
j≥1

〈T |x j〉yj

and then

(πUmbra
Y (S))∗ (πUmbra

Y (T ))∗ = (
∑
i≥1

〈S |x i 〉yi )
∗ (

∑
j≥1

〈T |x j〉yj ) =(∑
i≥1

〈S |x i 〉yi ) +
∑
j≥1

〈T |x j〉yj +
∑
i ,j≥1

〈S |x i 〉〈T |x j〉yi+j

)∗
=

(πUmbra
Y (S + T + ST ))∗ = (πUmbra

Y ((1 + S)(1 + T )− 1))∗

ii.1) The one parameter group property is a consequence of (23) applied
to the series eti .T − 1, i = 1, 2.
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Proof (Sketch)/2

ii.2) Property 25 holds for every Q-algebra, in particular in k1 = k[t] and k1〈〈Y 〉〉
is endowed with the structure of a differential ring by term-by-term derivations
(see [?] for formal details). We can write G (t) = 1 + t.G1 + t2.G2(t) (where
G1 = πUmbra

Y (T ) is independent from t) and from 25, we have

G ′(t) = G1.G (t) ; G (0) = 1Y ∗ (28)

but H(t) = exp (t.G1) satisfies 28 whence the equality.
ii.3) At t = 1, we have exp (πUmbra

Y (T )) = (πUmbra
Y (eT − 1))∗ hence, with

P = πUmbra
Y (eT − 1) (take T := log(πUmbra

x (P) + 1))

πUmbra
Y (T ) = log (P∗) [QED] (29)

Application of (27)

(tyk )∗ = exp
(∑

n≥1

(−1)n−1tnynk

n

)
(30)
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Conclusion(s): More applications and perspectives.

We have seen

1 Star of the plane property (see [12]) holds for non-commutative valued (as
matrix-valued) characters.

2 Combinatorial study of other ttϕ one-parameter groups and evolution
equations in convolution algebras.

3 Factorisation of A-valued characters (A k-CAAU).
For example, with

B = (k〈X 〉, tt , 1X∗ ,∆conc , ε) , A = (k〈X 〉, tt , 1X∗) , χ = Id

(χ is a shuffle character) one has (MRS factorisation)

Γ(χ) =
∑

w∈X∗

Id(w)⊗ w =
∑

w∈X∗

Sw ⊗ Pw =

↘∏
l∈LynX

exp(Sl ⊗ Pl ) (31)
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Conclusion(s): More applications and perspectives./2

4 Deformed version of factorisation above for ttϕ (with ϕ associative,
commutative, dualisable and moderate). With

B =
(
k〈X 〉, ttϕ, 1X∗ ,∆conc , ε

)
, A =

(
k〈X 〉, ttϕ, 1X∗

)
, χ = Id

(χ is a shuffle character) one has

Γ(χ) =
∑

w∈X∗

Id(w)⊗ w =
∑

w∈X∗

Σw ⊗ Πw =

↘∏
l∈LynX

exp(Σl ⊗ Πl ) (32)

5 Holds for all enveloping algebras which are free as k-modules (with Q ↪→ k).
This could help to the combinatorial study of the group of characters of
enveloping algebras of Lie algebras like KZa-Lie algebras and other ones, or
deformed.

aKnizhnik–Zamolodchikov.
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Conclusion(s)/3: Main theorem

Theorem, [13]

Let k be a Q-algebra and g be a Lie algebra which is free as a k-module. Let us
fix an ordered basis B = (bi )i∈I (where the ground set (I , <) is totally ordered) of
g. To construct the associated PBW basis of U = U(g), we use the following
multiindex notation. For every α ∈ N(I ), we set

Bα = b
α(i1)
i1
· · · bα(in)

in
∈ U (33)

where {i1, · · · , in} ⊃ supp(α) (and i1 < · · · < in).
Consider the linear coordinate forms Bβ ∈ U∨ defined by

〈Bβ |Bα〉 = δα,β . (34)

We will also use the elementary multiindices ei ∈ N(I ) defined for all i ∈ I by
ei (j) = δi,j .
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Conclusion(s): Main theorem/2

Theorem cont’d
Then:a

1 We have

Bα ~ Bβ =
(α + β) !

α !β !
Bα+β (35)

and

Bα(i1)ei1
+···+α(ik )eik

=
B
~α(i1)
ei1

~ · · ·~ B
~α(ik )
eik

α(i1) ! · · ·α(ik ) !
. (36)

2 The following infinite product identity holds:

IdU = ~→i∈I e
Im(Bei

⊗Bei )
~ =

→∏
i∈I

e
Im(Bei

⊗Bei )
~ (37)

within End(U).

aWe use the notation α! for α ∈ N(I ); this is the product α! =
∏

i∈I αi !.
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THANK YOU FOR YOUR ATTENTION !
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